-
運放的輸入和輸出電壓范圍究竟有多大?
首先,常見運算放大器并沒有接地端。標準運算放大器“不知道”接地的位置,因此它也就無從知道其工作電源是一個雙電源(±)還是一個單電源。只要電源輸入和輸出電壓在其工作范圍以內,就不會出問題。
2021-06-24
-
微功率零漂移運算放大器支持無線電流檢測
許多電流檢測電路遵循相同的簡單方法:在檢測電阻器的兩端產(chǎn)生一個電壓降:放大該電壓,用一個 ADC 讀取它,然后就知道電流的大小了。但是,如果檢測電阻器所處的電壓與系統(tǒng)地迥然不同,那么事情會很快變得復雜起來。典型解決方案可消除模擬或數(shù)字域中的電壓差。不過,這里有一種不同的方法,即采用無線方式。
2021-06-21
-
高電壓放大器把庫侖計數(shù)器范圍擴展至 ±270V
庫侖計數(shù)器能夠測量流入或流出電池的電荷,而小的專用 IC 則可直接與約 20V 以下的中低電池電壓相連。通過采用一個高電壓放大器作為電平移位器,就能把測量電路的輸入工作范圍擴展至高得多的電壓。LT6375 電壓差動放大器具備一些可使該電路在極寬電壓范圍內準確工作的特性。
2021-06-18
-
如何通過具有內部數(shù)字濾波器的高速ADC簡化AFE濾波
傳統(tǒng)的工業(yè)數(shù)據(jù)采集設計通常需要對模數(shù)轉換器 (ADC)之前的模擬前端 (AFE) 進行復雜的濾波處理。模擬濾波器的主要目的是衰減不需要的帶外信號,進而防止這類信號在所需的目標信號上發(fā)生混疊,因此,模擬濾波器又稱為抗混疊濾波器 (AAF)?;殳B頻段中不需要的信號和噪聲可能源自驅動放大器、電源切換引入的雜散,甚至是意外的干擾因素(干擾器)。
2021-06-17
-
利用吸收式濾波器提高線性度
驅動直接采樣高速ADC時,最有可能降低性能的地方是最終放大器與ADC之間的接口。任何直接采樣ADC都會在采樣過程中產(chǎn)生非線性電荷。每次采樣開關閉合時,此電荷就會反射到輸入網(wǎng)絡中。如果不加以衰減,它會反射回ADC且被重新采樣,致使ADC的失真或交調失真性能下降。ADC的輸入網(wǎng)絡應盡可能接近50 Ω,以便最大限度地吸收此非線性電荷。使用高吸收性濾波器可抑制采樣過程中產(chǎn)生的非線性信號音,從而改善SFDR。
2021-06-16
-
如何使用電流鏡控制電源?
在許多應用中,例如電池充電器,太陽能控制器等,控制電源是一項必不可少的任務。工業(yè)上提供了很多現(xiàn)成的集成電源,不幸的是,它們沒有提供控制輸出的簡單方法。通常,電源可以設計為功率運算放大器,其同相輸入連接到參考電壓(在圖1中的綠色矩形中)。
2021-06-10
-
通用運放與精密運放應該如何選擇?
我們常用的是通用運算放大器如LM321用于電流檢測應用。這是數(shù)十年來一直在使用的傳統(tǒng)運算放大器之一。這些傳統(tǒng)運算放大器成本低,用于無數(shù)應用。然而,有時同樣的客戶又向我們反饋,說這些運算放大器在其電流檢測電路中出現(xiàn)故障。當我們查看退回的運算放大器單元時,它們按預期工作。那么問題出在哪里?
2021-06-08
-
經(jīng)典儀表放大器的新版本提供更高的設計靈活性
與傳感器連接時,儀表放大器(IA)作用強大且功能多樣,但也存在一些限制,會阻礙可變增益IA或可編程增益儀表放大器(PGIA)的設計。在有些文獻中,后者也被稱為軟件可編程增益放大器(SPGA)。因為經(jīng)常遇到要求根據(jù)各種各樣的傳感器或環(huán)境條件調節(jié)電路的情況,我們需要這類PGIA。采用固定增益時,系統(tǒng)設計人員可能不得不應對欠佳的SNR,這會降低精度。我的同事發(fā)表了《模擬對話》文章"可編程增益儀表放大器:找到適合的放大器",其中討論了多種有助于創(chuàng)建精密、穩(wěn)定的PGIA的技術。
2021-06-04
-
直擊增益范圍:利用儀表放大器獲得多個增益范圍
為了實現(xiàn)高精度傳感器測量動態(tài)范圍的最大化,可能需要使用可編程增益儀表放大器(PGIA)。由于大多數(shù)儀表放大器使用外部增益電阻(RG)來設置增益,似乎通過一組多路復用增益電阻就可以實現(xiàn)所需的可編程增益。雖然這是可能的,但在以這種方式將固態(tài)多路復用器施加于系統(tǒng)之前需要考慮三個主要問題:電源與信號電壓的限制、開關電容和導通電阻。
2021-06-04
-
驅動高精度模數(shù)轉換器
市場對工業(yè)應用的需求與日俱增,數(shù)據(jù)采集系統(tǒng)是其中的關鍵設備。它們通常用于檢測溫度、流量、液位、壓力和其他物理量,隨后將這些物理量對應的模擬信號轉換為高分辨率的數(shù)字信息,再由軟件做進一步處理。此類系統(tǒng)對精度和速度的要求越來越高。這些數(shù)據(jù)采集系統(tǒng)由放大器電路和模數(shù)轉換器(ADC)組成,其性能對系統(tǒng)具有決定性的影響。然而,ADC的輸入驅動器也會影響整體精度。該驅動器用于緩沖和放大輸入信號。
2021-06-04
-
儀表放大器橋接電路誤差預算分析
在典型應用中,有必要了解儀表放大器的誤差源。下圖1所示為一個350 Ω的稱重傳感器,當用10 V源激勵時,其滿量程輸出為100 mV。用外部499 Ω增益設置電阻,將AD620的增益設為100。表中列出了每種誤差源對2145 ppm的總非調整誤差的貢獻。
2021-06-04
-
為什么輸出端共模信號的影響大于CMRR規(guī)格值?
與差分輸入電路打交道時,共模抑制比(CMRR)是基本概念,但常常被誤解。使用儀表放大器時,關于電路中共模信號的影響,遇到不正確的期望并不罕見。
2021-06-04
- 如何解決在開關模式電源中使用氮化鎵技術時面臨的挑戰(zhàn)?
- 不同拓撲結構中使用氮化鎵技術時面臨的挑戰(zhàn)有何差異?
- 集成化柵極驅動IC對多電平拓撲電壓均衡的破解路徑
- 多通道同步驅動技術中的死區(qū)時間納米級調控是如何具體實現(xiàn)的?
- 電壓放大器:定義、原理與技術應用全景解析
- 減排新突破!意法半導體新加坡工廠冷卻系統(tǒng)升級,護航可持續(xù)發(fā)展
- 低排放革命!貿(mào)澤EIT系列聚焦可持續(xù)技術突破
- 工程師必看:晶振起振檢測全攻略
- 高功率鍍膜新突破!瑞典Ionautics HiPSTER 25電源首次運行
- 安森美SiC Cascode技術:共源共柵結構深度解析
- 晶振如何起振:深入解析石英晶體的壓電效應
- 精度?帶寬?抗噪!三大維度解鎖電壓放大器場景適配密碼
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall